Cannabidiol and Epilepsy

Studies and peer-reviewed research into the effects of CBD and Epilepsy

Cannabinoids for epilepsyFrom the abstract:
We found four randomized reports which included a total of 48 patients, each of which used cannabidiol as the treatment agent. One report was an abstract, and another was a letter to the editor. Anti-epileptic drugs were continued in all. Details of randomisation were not included in any study. There was no investigation of whether control and treatment groups were the same or different. All the reports were low quality.The four reports only answered the secondary outcome about adverse effects. None of the patients in the treatment groups suffered adverse effects.
Cannabis, CBD, and epilepsy – From receptors to clinical response From the abstract:
Recreational cannabis use in adults with epilepsy is widespread. The use of cannabis for medicinal purposes is also becoming more prevalent. For this purpose, various preparations of cannabis of varying strengths and content are being used. The recent changes in the legal environment have improved the availability of products with high cannabidiol (CBD) and low tetrahydrocannabinol (THC) concentrations. There is some anecdotal evidence of their potential efficacy, but the mechanisms of such action are not entirely clear. Some suspect an existence of synergy or “entourage effect” between CBD and THC. There is strong evidence that THC acts via the cannabinoid receptor CB1. The mechanism of action of CBD is less clear but is likely polypharmacological. The scientific data support the role of the endocannabinoid system in seizure generation, maintenance, and control in animal models of epilepsy. There are clear data for the negative effects of cannabis on the developing and mature brain though these effects appear to be relatively mild in most cases. Further data from well-designed studies are needed regarding short- and long-term efficacy and side effects of CBD or high-CBD/low-THC products for the treatment of seizures and epilepsy in children and adults.
Chronic administration of CBD to healthy volunteers and epileptic patientsFrom the abstract:
In phase 1 of the study, 3 mg/kg daily of cannabidiol (CBD) was given for 30 days to 8 health human volunteers. Another 8 volunteers received the same number of identical capsules containing glucose as placebo in a double-blind setting. Neurological and physical examinations, blood and urine analysis, ECG and EEG were performed at weekly intervals. In phase 2 of the study, 15 patients suffering from secondary generalized epilepsy with temporal focus were randomly divided into two groups. Each patient received, in a double-blind procedure, 200-300 mg daily of CBD or placebo. The drugs were administered for along as 4 1/2 months. Clinical and laboratory examinations, EEG and ECG were performed at 15- or 30-day intervals. Throughout the experiment the patients continued to take the antiepileptic drugs prescribed before the experiment, although these drugs no longer controlled the signs of the disease. All patients and volunteers tolerated CBD very well and no signs of toxicity or serious side effects were detected on examination. 4 of the 8 CBD subjects remained almost free of convulsive crises throughout the experiment and 3 other patients demonstrated partial improvement in their clinical condition. CBD was ineffective in 1 patient. The clinical condition of 7 placebo patients remained unchanged whereas the condition of 1 patient clearly improved. The potential use of CBD as an antiepileptic drug and its possible potentiating effect on other antiepileptic drugs are discussed.
Endocannabinoid system protects against cryptogenic seizuresFrom the abstract:
Effects of the cannabinoid antagonist rimonabant on the EEG were investigated in healthy, non-epileptic rats. The drug was administered orally at 30 mg/kg/day for 3 weeks. The EEG was recorded continuously. In 3 out of 13 rats, limbic convulsive seizures, which were not related to the time of drug administration, were observed after 5-8 days. We hypothesize that an accumulation of micro-injuries in the brain is responsible for these “spontaneous” seizures.
Seizing an opportunity for the endocannabinoid systemFrom the abstract:
Exogenous cannabinoids can limit seizures and neurodegeneration, and their actions are largely mimicked by endogenous cannabinoids (endocannabinoids). Endocannabinoids are mobilized by epileptiform activity and in turn influence this activity by inhibiting synaptic transmission; both excitatory and some inhibitory synapses can be suppressed, leading to potentially complex outcomes. Moreover, the endocannabinoid system is not a fixed entity, and its strength can be enhanced or reduced. Endocannabinoids and their receptors are altered by epileptic seizures in ways that can reduce the efficacy of both exogenous and endogenous cannabinoids in sometimes unexpected ways.
Cannabidiol: promise and pitfallsFrom the abstract:
Over the past few years, increasing public and political pressure has supported legalization of medical marijuana. One of the main thrusts in this effort has related to the treatment of refractory epilepsy-especially in children with Dravet syndrome-using cannabidiol (CBD). Despite initiatives in numerous states to at least legalize possession of CBD oil for treating epilepsy, little published evidence is available to prove or disprove the efficacy and safety of CBD in patients with epilepsy. This review highlights some of the basic science theory behind the use of CBD, summarizes published data on clinical use of CBD for epilepsy, and highlights issues related to the use of currently available CBD products. Cannabidiol is the major nonpsychoactive component of Cannabis sativa. Over the centuries, a number of medicinal preparations derived from C. sativa have been employed for a variety of disorders, including gout, rheumatism, malaria, pain, and fever. These preparations were widely employed as analgesics by Western medical practitioners in the 19(th) century (1). More recently, there is clinical evidence suggesting efficacy in HIV-associated neuropathic pain, as well as spasms associated with multiple sclerosis (1).
CBD exerts anti-convulsant effects in animal models of temporal lobe and partial seizuresFrom the abstract:
Cannabis sativa has been associated with contradictory effects upon seizure states despite its medicinal use by numerous people with epilepsy. We have recently shown that the phytocannabinoid cannabidiol (CBD) reduces seizure severity and lethality in the well-established in vivo model of pentylenetetrazole-induced generalised seizures, suggesting that earlier, small-scale clinical trials examining CBD effects in people with epilepsy warrant renewed attention. Here, we report the effects of pure CBD (1, 10 and 100mg/kg) in two other established rodent seizure models, the acute pilocarpine model of temporal lobe seizure and the penicillin model of partial seizure. Seizure activity was video recorded and scored offline using model-specific seizure severity scales. In the pilocarpine model CBD (all doses) significantly reduced the percentage of animals experiencing the most severe seizures. In the penicillin model, CBD (≥ 10 mg/kg) significantly decreased the percentage mortality as a result of seizures; CBD (all doses) also decreased the percentage of animals experiencing the most severe tonic-clonic seizures. These results extend the anti-convulsant profile of CBD; when combined with a reported absence of psychoactive effects, this evidence strongly supports CBD as a therapeutic candidate for a diverse range of human epilepsies.
Cannabidiol displays antiepileptiform and antiseizure properties in vitro and in vivoFrom the abstract:
Plant-derived cannabinoids (phytocannabinoids) are compounds with emerging therapeutic potential. Early studies suggested that cannabidiol (CBD) has anticonvulsant properties in animal models and reduced seizure frequency in limited human trials. Here, we examine the antiepileptiform and antiseizure potential of CBD using in vitro electrophysiology and an in vivo animal seizure model, respectively. CBD (0.01-100 muM) effects were assessed in vitro using the Mg(2+)-free and 4-aminopyridine (4-AP) models of epileptiform activity in hippocampal brain slices via multielectrode array recordings. In the Mg(2+)-free model, CBD decreased epileptiform local field potential (LFP) burst amplitude [in CA1 and dentate gyrus (DG) regions] and burst duration (in all regions) and increased burst frequency (in all regions). In the 4-AP model, CBD decreased LFP burst amplitude (in CA1 only at 100 muM CBD), burst duration (in CA3 and DG), and burst frequency (in all regions). CBD (1, 10, and 100 mg/kg) effects were also examined in vivo using the pentylenetetrazole model of generalized seizures. CBD (100 mg/kg) exerted clear anticonvulsant effects with significant decreases in incidence of severe seizures and mortality compared with vehicle-treated animals. Finally, CBD acted with only low affinity at cannabinoid CB(1) receptors and displayed no agonist activity in [(35)S]guanosine 5′-O-(3-thio)triphosphate assays in cortical membranes. These findings suggest that CBD acts, potentially in a CB(1) receptor-independent manner, to inhibit epileptiform activity in vitro and seizure severity in vivo. Thus, we demonstrate the potential of CBD as a novel antiepileptic drug in the unmet clinical need associated with generalized seizures.
Hypnotic and antiepileptic effects of CBDFrom the abstract:
Clinical trials with cannabidiol (CBD) in healthy volunteers, isomniacs, and epileptic patients conducted in the authors' laboratory from 1972 up to the present are reviewed. Acute doses of cannabidiol ranging from 10 to 600 mg and chronic administration of 10 mg for 20 days or 3 mg/kg/day for 30 days did not induce psychologic or physical symptoms suggestive of psychotropic or toxic effects; however, several volunteers complained of somnolence. Complementary laboratory tests (EKG, blood pressure, and blood and urine analysis) revealed no sign of toxicity. Doses of 40, 80, and 160 mg cannabidiol were compared to placebo and 5 mg nitrazepam in 15 insomniac volunteers. Subjects receiving 160 mg cannabidiol reported having slept significantly more than those receiving placebo; the volunteers also reported significantly less dream recall; with the three doses of cannabidiol than with placebo. Fifteen patients suffering from secondary generalized epilepsy refractory to known antiepileptic drugs received either 200 to 300 mg cannabidiol daily or placebo for as long as 4.5 months. Seven out of the eight epileptics receiving cannabidiol had improvement of their disease state, whereas only one placebo patient improved.

© 2020 CBDCOAs. All rights reserved.