Cannabidiol and Huntington's Disease
Studies and peer-reviewed research into the effects of CBD and Huntington's Disease
Neuroprotective effects of phytocannabinoid-based medicines in experimental models of Huntington's diseaseFrom the abstract:
We studied whether combinations of botanical extracts enriched in either Δ(9)-tetrahydrocannabinol (Δ(9)-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, provide neuroprotection in rat models of Huntington's disease (HD). We used rats intoxicated with 3-nitropropionate (3NP) that were given combinations of Δ(9)-THC- and CBD-enriched botanical extracts. The issue was also studied in malonate-lesioned rats. The administration of Δ(9)-THC- and CBD-enriched botanical extracts combined in a ratio of 1:1 as in Sativex attenuated 3NP-induced GABA deficiency, loss of Nissl-stained neurons, down-regulation of CB(1) receptor and IGF-1 expression, and up-regulation of calpain expression, whereas it completely reversed the reduction in superoxide dismutase-1 expression. Similar responses were generally found with other combinations of Δ(9)-THC- and CBD-enriched botanical extracts, suggesting that these effects are probably related to the antioxidant and CB(1) and CB(2) receptor-independent properties of both phytocannabinoids. In fact, selective antagonists for both receptor types, i.e., SR141716 and AM630, respectively, were unable to prevent the positive effects on calpain expression caused in 3NP-intoxicated rats by the 1:1 combination of Δ(9)-THC and CBD. Finally, this combination also reversed the up-regulation of proinflammatory markers such as inducible nitric oxide synthase observed in malonate-lesioned rats. In conclusion, this study provides preclinical evidence in support of a beneficial effect of the cannabis-based medicine Sativex as a neuroprotective agent capable of delaying disease progression in HD, a disorder that is currently poorly managed in the clinic, prompting an urgent need for clinical trials with agents showing positive results in preclinical studies.
Cannabinoids: Novel medicines for the treatment of Huntington's diseaseFrom the abstract:
Cannabinoid pharmacology has experienced a notable increase in the last 3 decades which is allowing the development of novel cannabinoid-based medicines for the treatment of different human pathologies, for example, Cesamet® (nabilone) or Marinol® (synthetic Δ9-tetrahydrocannabinol for oral administration) that were approved in 80s for the treatment of nausea and vomiting associated with chemotherapy treatment in cancer patients and in 90s for anorexiacachexia associated with AIDS therapy. Recently, the british company GW Pharmaceuticals plc has developed an oromucosal spray called Sativex®, which is constituted by an equimolecular combination of Δ9-tetrahydrocannabinol- and cannabidiol- enriched botanical extracts. Sativex® has been approved for the treatment of specific symptoms (i.e. spasticity and pain) of multiple sclerosis patients in various countries (i.e. Canada, UK, Spain, New Zealand). However, this cannabis- based medicine has been also proposed to be useful in other neurological disorders given the analgesic, antitumoral, anti-inflammatory, and neuroprotective properties of their components demonstrated in preclinical models. Numerous clinical trials are presently being conducted to confirm this potential in patients. We are particularly interested in the case of Huntington's disease (HD), an autosomal-dominant inherited disorder caused by an excess of CAG repeats in the genomic allele resulting in a polyQ expansion in the encoded protein called huntingtin, and that affects primarily striatal and cortical neurons thus producing motor abnormalities (i.e. chorea) and dementia. Cannabinoids have been studied for alleviation of hyperkinetic symptoms, given their inhibitory effects on movement, and, in particular, as disease-modifying agents due to their anti-inflammatory, neuroprotective and neuroregenerative properties. This potential has been corroborated in different experimental models of HD and using different types of cannabinoid agonists, including the phytocannabinoids present in Sativex®, and we are close to initiate a clinical trial with this cannabis-based medicine to evaluate its capability as a disease-modifying agent in a population of HD patients. The present review will address all preclinical evidence supporting the potential of Sativex® for the treatment of disease progression in HD patients. The article presents some promising patents on the cannabinoids.
Controlled clinical trial of cannabidiol in Huntington's diseaseFrom the abstract:
Based on encouraging preliminary findings, cannabidiol (CBD), a major nonpsychotropic constituent of Cannabis, was evaluated for symptomatic efficacy and safety in 15 neuroleptic-free patients with Huntington's Disease (HD). The effects of oral CBD (10 mg/kg/day for 6 weeks) and placebo (sesame oil for 6 weeks) were ascertained weekly under a double-blind, randomized cross-over design. A comparison of the effects of CBD and placebo on chorea severity and other therapeutic outcome variables, and on a Cannabis side effect inventory, clinical lab tests and other safety outcome variables, indicated no significant (p greater than 0.05) or clinically important differences. Correspondingly, plasma levels of CBD were assayed by GC/MS, and the weekly levels (mean range of 5.9 to 11.2 ng/ml) did not differ significantly over the 6 weeks of CBD administration. In summary, CBD, at an average daily dose of about 700 mg/day for 6 weeks, was neither symptomatically effective nor toxic, relative to placebo, in neuroleptic-free patients with HD.
Prospects for cannabinoid therapies in basal ganglia disordersFrom the abstract:
Cannabinoids are promising medicines to slow down disease progression in neurodegenerative disorders including Parkinson's disease (PD) and Huntington's disease (HD), two of the most important disorders affecting the basal ganglia. Two pharmacological profiles have been proposed for cannabinoids being effective in these disorders. On the one hand, cannabinoids like Δ(9) -tetrahydrocannabinol or cannabidiol protect nigral or striatal neurons in experimental models of both disorders, in which oxidative injury is a prominent cytotoxic mechanism. This effect could be exerted, at least in part, through mechanisms independent of CB(1) and CB(2) receptors and involving the control of endogenous antioxidant defences. On the other hand, the activation of CB(2) receptors leads to a slower progression of neurodegeneration in both disorders. This effect would be exerted by limiting the toxicity of microglial cells for neurons and, in particular, by reducing the generation of proinflammatory factors. It is important to mention that CB(2) receptors have been identified in the healthy brain, mainly in glial elements and, to a lesser extent, in certain subpopulations of neurons, and that they are dramatically up-regulated in response to damaging stimuli, which supports the idea that the cannabinoid system behaves as an endogenous neuroprotective system. This CB(2) receptor up-regulation has been found in many neurodegenerative disorders including HD and PD, which supports the beneficial effects found for CB(2) receptor agonists in both disorders. In conclusion, the evidence reported so far supports that those cannabinoids having antioxidant properties and/or capability to activate CB(2) receptors may represent promising therapeutic agents in HD and PD, thus deserving a prompt clinical evaluation.
Neuroprotective Properties of Cannabigerol in Huntington's Disease: Studies in R6/2 Mice and 3-Nitropropionate-lesioned MiceFrom the abstract:
Different plant-derived and synthetic cannabinoids have shown to be neuroprotective in experimental models of Huntington's disease (HD) through cannabinoid receptor-dependent and/or independent mechanisms. Herein, we studied the effects of cannabigerol (CBG), a nonpsychotropic phytocannabinoid, in 2 different in vivo models of HD. CBG was extremely active as neuroprotectant in mice intoxicated with 3-nitropropionate (3NP), improving motor deficits and preserving striatal neurons against 3NP toxicity. In addition, CBG attenuated the reactive microgliosis and the upregulation of proinflammatory markers induced by 3NP, and improved the levels of antioxidant defenses that were also significantly reduced by 3NP. We also investigated the neuroprotective properties of CBG in R6/2 mice. Treatment with this phytocannabinoid produced a much lower, but significant, recovery in the deteriorated rotarod performance typical of R6/2 mice. Using HD array analysis, we were able to identify a series of genes linked to this disease (e.g., symplekin, Sin3a, Rcor1, histone deacetylase 2, huntingtin-associated protein 1, δ subunit of the gamma-aminobutyric acid-A receptor (GABA-A), and hippocalcin), whose expression was altered in R6/2 mice but partially normalized by CBG treatment. We also observed a modest improvement in the gene expression for brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and peroxisome proliferator-activated receptor-γ (PPARγ), which is altered in these mice, as well as a small, but significant, reduction in the aggregation of mutant huntingtin in the striatal parenchyma in CBG-treated animals. In conclusion, our results open new research avenues for the use of CBG, alone or in combination with other phytocannabinoids or therapies, for the treatment of neurodegenerative diseases such as HD.
Neurological aspects of medical use of CBDFrom the abstract:
Pre-clinical evidence largely shows that CBD can produce beneficial effects in AD, PD and MS patients, but its employment for these disorders needs further confirmation from well designed clinical studies. CBD pre-clinical demonstration of antiepileptic activity is supported by recent clinical studies in human epileptic subjects resistant to standard antiepileptic drugs showing its potential use in children and young adults affected by refractory epilepsy. Evidence for use of CBD in PD is still not supported by sufficient data whereas only a few studies including a small number of patients are available.