Cannabidiol and Osteoporosis/Bone Health
Studies and peer-reviewed research into the effects of CBD and Osteoporosis/Bone Health
Cannabinoid receptors as target for treatment of osteoporosis: a tale of two therapiesFrom the abstract:
This review summarises in vitro and in vivo findings relating to the influence of cannabinoid ligands on bone metabolism and argues in favour of the exploitation of cannabinoid receptors as targets for both anabolic and anti-resorptive therapy for treatment of complex multifaceted bone diseases such as osteoporosis.
Cannabinoids and bone: friend or foe?From the abstract:
Cannabinoids are also produced within synovial tissues, and preclinical studies have shown that cannabinoid receptor ligands are effective in the treatment of inflammatory arthritis. These data indicate that cannabinoid receptors and the enzymes responsible for ligand synthesis and breakdown play important roles in bone remodeling and in the pathogenesis of joint disease.
Cannabinoids and the skeleton: from marijuana to reversal of bone lossFrom the abstract:
Preclinical studies have shown that a synthetic CB2-specific agonist rescues ovariectomy-induced bone loss. Taken together, the reports on cannabinoid receptors in mice and humans pave the way for the development of 1) diagnostic measures to identify osteoporosis-susceptible polymorphisms in CNR2, and 2) cannabinoid drugs to combat osteoporosis.
Endocannabinoids and the regulation of bone metabolismFrom the abstract:
Hence, synthetic CB(2) ligands, which are stable and orally available, provide a basis for developing novel anti-osteoporotic therapies, free of psychotropic effects. The CNR2 gene (encoding CB(2)) in women is associated with low bone mineral density, offering an assay for identifying females at risk of developing osteoporosis.
Cannabinoid receptors and the regulation of bone massFrom the abstract:
Activation of CB1 in sympathetic nerve terminals in bone inhibits norepinephrine release, thus balancing the tonic sympathetic restrain of bone formation. Low levels of CB1 were also reported in osteoclasts. CB1-null mice display a skeletal phenotype that is dependent on the mouse strain, gender and specific mutation of the CB1 encoding gene, CNR1.
Peripheral cannabinoid receptor, CB2, regulates bone massFrom the abstract:
These results demonstrate that the endocannabinoid system is essential for the maintenance of normal bone mass by osteoblastic and osteoclastic CB2 signaling. Hence, CB2 offers a molecular target for the diagnosis and treatment of osteoporosis, the most prevalent degenerative disease in developed countries.
Skeletal lipidomics: regulation of bone metabolism by fatty acid amide familyFrom the abstract:
As the FAA family holds great promise as a basis for the treatment of osteoporosis and other diseases involving bone, further studies should aim towards the complete profiling of these lipids and their receptors in bone tissue, followed by elucidation of their function and mechanism of action.